В КАКОМ НАПРАВЛЕНИИ ТЕЧЕТ ТОК
В каком направлении течет ток – от плюса к минусу или наоборот? И может ли электричество течь в двух направлениях одновременно? Давайте разберемся в этом запутанном вопросе.
В старых книгах про основы электроники любили сравнивать электрический ток с проточной водой. Именно там многие прочитали, что ток течет от плюса к минусу. Позже оказалось, что ток на самом деле течет наоборот, и вообще плюс-минус – это всё условно.
Создателем всей этой неразберихи был американец Бен Франклин – человек, который использовал воздушный змей, чтобы подвести электричество к земле. Он утверждал, что молнии не были признаком гнева богов, а лишь немного более крупными и опасными электрическими искрами. В подтверждение своих слов он решил запустить во время шторма воздушного змея и с его помощью поймать несколько огромных «искр» в банку. В конце концов, всё это дело привело к изобретению громоотвода.
Вскоре после этого Франклин предположил, что электричество имеет две природы, которые они назвали положительной (+) и отрицательной (-). Важно отметить что в то время (около 1750 г.) элементарные частицы еще не были известны, поэтому электричество сравнивали с водой. Итак, если бы у данного объекта было много электричества, он стал бы положительно заряженным. В свою очередь, дефицит был отрицательным. Согласно Франклину, при объединении двух противоположно заряженных объектов “электрическая жидкость” естественным образом перетекает от положительного заряда к отрицательному, как водопад текущий сверху вниз. Эта теория имела смысл и была подтверждена многочисленными экспериментами независимых ученых.
В последующие годы исследования в области электричества получили ускорение. Были открыты способы передачи электричества по проводам, описан феномен электромагнетизма и созданы новые электрические устройства, такие как батарея и лампочка. Учёные понимали электричество все лучше и лучше, и теория электрической жидкости перестала соответствовать этому пониманию. Но последний удар был нанесен примерно через 150 лет, когда был открыт электрон – мельчайшая заряженная частица. Это достижение стало прямым доказательством того, что:
- Электричество – это не жидкость, а физические частицы, которые несут с собой заряд,
- Отрицательный заряд – это не «недостаток электрической жидкости», а избыток электронов.
- Положительный заряд – это не «избыток электрической жидкости», а недостаток электронов.
Соединяя два противоположно заряженных объекта вместе, электроны перескакивают с отрицательно заряженного объекта на положительно заряженный. Электричество течет вопреки предположениям Франклина в другом направлении.
Представьте себе раздражение физиков того времени, когда они обнаружили что тысячи книг и публикаций, написанных за более чем 100 лет, были основаны на неправильном предположении. С одной стороны, все переписать уже невозможно, но после открытия электрона всё-таки не получится делать вид, что направление «от плюса к минусу» было правильным.
Да, возможно электроны перетекают с отрицательного на положительный, но мы все еще не можем видеть эти отдельные частицы. Горит же и обычная лампочка, как бы ее не подключали к батарее. Так есть ли смысл переворачивать мир науки с ног на голову? Может просто согласиться с тем, что электричество течет так, как сейчас? Вроде никто не заметит разницы.
Когда рассказывалась история Франклина, ни разу не использовался термин «электрический ток». Это потому, что в те времена такой концепции просто не существовало, и потребовалось еще 50 лет упорной работы блестящих умов, чтобы открыть «мобильность заряда». Прорыв произошел только в начале 19 века, благодаря новой области науки под названием электрохимия. Это не только позволило создать непрерывный поток электрического заряда, но и посеяло первое зерно сомнения среди поклонников теории перетекания электричества от плюса к минусу.
Погружение двух разных металлических пластин в раствор кислоты заставляло электричество течь между ними. Но природа этого явления была неизвестна, пока Фарадей не решил изучить его поближе. В ходе эксперимента он заметил, что одна из пластин буквально растворяется у него на глазах, а на другой появляется металлический налет. Текущий заряд вызвал поток вещества, и Фарадей правильно сделал вывод, что поскольку пластины были сделаны из двух разных металлов, в растворе должен был быть поток двух разных зарядов одновременно – отрицательного и положительного, которые он назвал ионами.
Сначала считалось, что «движущееся электричество» полностью отличается от «статического электричества», и эти две области рассматривались отдельно. Но это было только начало проблемы. Следующие годы принесли еще больше интригующих открытий. Изучая поток заряда в проводах, начали замечать взаимосвязь между генерируемым напряжением, размерами проводника и температурой, до которой он нагревается. Возникла идея сопротивления, благодаря которому можно было определить количество протекающего электричества. В свою очередь, физик Эрстед заметил что электричество, протекающее по проводу, мешает работе компаса – так родилась другая, совершенно новая отрасль электротехники – электромагнетизм.
Каждое последующее открытие требовало создания новых математических уравнений и формул. Постепенно стали замечаться взаимосвязи между различными электрическими величинами. Были созданы законы Джоуля, Ома, Кирхгофа и электромагнитной индукции. Поток электричества мог вызвать явления, о которых Франклин даже не предполагал. Исследования становились все более точными, и все открытия приходилось как-то выражать, измерять и сравнивать. В какой-то момент в мире было 4 полностью отдельных системы электрических потоков. Чтобы во всем этом не запутаться, нужно было как-то все это стандартизировать.
Официальное электричество
Между 1881 и 1904 годами было проведено несколько собраний Международного электрического конгресса (МЭК), на котором был установлен ряд общих электромагнитных единиц, таких как ом, вольт, фарад и кулон. Именно в этот период было создано официальное определение электрического тока.
С открытием электрона и ионов все стало ясно, и теория электрической жидкости Франклина была похоронена. Доказано, что электричество состоит из небольших одиночных зарядов, которые могут перемещаться под действием напряжения. И хотя электроны в проводах перетекали с отрицательного на положительный, а ионы в растворах текли в обоих направлениях, все эти частицы имеют одну общую черту – они заряжены одинаковым значением. Благодаря этому не было необходимости создавать несколько разных определений, и все эти явления были связаны одним общим термином: упорядоченный поток электрического заряда или электрический ток.
Единицей измерения электрического тока является ампер, а устройства для измерения тока называются амперметрами. Первый амперметр был в виде серебряной пластинки, которую погружали в раствор нитрата серебра. Под действием протекающего тока серебро выпало из раствора и оседало на пластине. Взвесив пластину до и после ученые определили, что один ампер тока соответствует осаждению 0,001118 грамма серебра в секунду. Это определение изменилось с годами, и сегодня один ампер – это поток заряда и значение одного кулона за одну секунду.
Условное направление тока
Хотя физики много знали о токе и могли его измерить, они все же не могли наблюдать отдельные заряды или точную траекторию их движения. Все что они видели, – это последствия протекающего тока, такие как повышение температуры проводника, падение напряжения на резисторе, изменение магнитного поля или осаждение серебра на пластине. В этом контексте тип тока и его направление не имели значения. Два кулона в секунду в форме электронов, текущих от отрицательного к положительному, имеют тот же эффект что и один кулон положительных ионов и один кулон отрицательных ионов, текущие в противоположных направлениях. Так зачем это каждый раз различать? Разве не проще выбрать один знак и одно условное направление?
Если предположим что задача электрического тока – переносить энергию (например через лампочку), то каждый из трех случаев, показанных на рисунке, будет иметь точно такой же эффект.
Общий ток для всех
Развитие технологий и производства означало, что электричество постепенно покинуло лаборатории и начало проникать в дома. Коммерциализация электроэнергии потребовала унификации правил и положений и упрощения предположений. Появились электростанции, электросети и электроника. Созданы профессии электрика и электронщика. Благодаря созданию условного направления тока они могли использовать несколько простых и универсальных формул в своей повседневной работе, а более сложные вопросы, связанные с теорией электричества, оставить физикам и ученым.
В общем, что касается тока, учёные до конца не понимают это и сейчас. Но благодаря тому что выбрали условное направление от плюса к минусу, ток всегда будет течь в одном и том же направлении даже если произойдут новые открытия – стандартизация в этом вопросе лучшее решение.
Как протекает ток в схеме?
Добрый день! Я начинающий радиолюбительской и сейчас учу теорию. Но не могу понять как протекает ток в схемах и для чего нужен каждый блок элементов. Что такое резистор, конденсатор и прочее я знаю, а какая последовательность непонятно. Я прикрепил несколько схем, буду рад, если опишите хоть одну из них. Там где 4 схемы на фото нужно только 1 и 3. Либо киньте ссылку на ресурс, где объясняют как как работает радиоприемник в последовательности. Схему с переключателем гирлянды я прикрепил, потому что там есть что то вроде фильтра. Очень много литературы именно для начинающих. Начни с книги Р. Сворень «Шаг за шагом». В этой книге хорошая последовательность подачи азов. Не нужно начинать с каких-то схем, у которых нет описания, если даже они окажутся очень простыми. Начни с азов. Вот еще список полезных книг. http://www.diagram.com.ua/library/elektronika-nach-radioljubitelyu/. Не нужно фыркать на старую литературу. Ведь основы радиотехники незыблимы, а к современной радиотехнике и электронике дойдешь со временем.
Направление тока в проводнике, как, откуда и куда течет электрический ток в проводниках.
Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.
Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.
А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.
Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.
Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.
Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).
Особенности протекания тока в металлах. Электрический ток в металлах Все металлы являются проводниками электрического тока. Все металлы являются проводниками электрического тока. Строение металлов
Когда в обыденной жизни, мы слышим выражение электрический ток, то в первую очередь подразумевается под этим именно ток проводимости. Это всего лишь один из видов токов для среды, называемой проводниками.
Природа тока проводимости обусловлена свойством вещества под названием — проводники. Давайте разберёмся с тем, что такое проводники, как в них существует электрический ток и какие явления при этом происходят.
Начнём с того, что электрический ток определяется как поток электричества, а значит это поток зарядов, которые и несут то самое электричество в количественном измерении в кулонах (Кл).
Структура металлов
На предыдущих уроках мы изучили практически все понятия, связанные с возникновением электрического тока: электрические заряды, электрическое поле, источники тока, простейшие электрические цепи и электрические схемы. Теперь нам предстоит выяснить, как течёт электрический ток в металлах, какие действия оказывает электрический ток, а также направление тока.
Металлы, как мы выяснили из экспериментов на предыдущих уроках, хорошо проводят электрический ток. Для того чтобы пояснить этот факт, зададимся вопросом: а что же такое металлы?
Металлы, как правило, – это поликристаллические вещества (состоящие из множества кристаллов) (Рис. 1, 2).
)
Рис. 2. Структура железа ()
Проводники первого рода и проводники второго рода.
Проводники делятся на проводники первого рода и проводники второго рода. Проводники первого рода – металлы и их сплавы, а проводники второго рода — водные растворы кислот, солей и щелочей, сильно разряженные газы.
Твердые и жидкие проводники, прохождение через которые электрического тока не вызывает переноса вещества в виде ионов, называются проводниками первого рода. Электрический ток в проводниках первого рода осуществляется потоком электронов (электронная проводимость). К таким проводникам относятся твёрдые и жидкие металлы и некоторые неметаллы (графит, сульфиды цинка и свинца). Их удельное сопротивление r лежит в пределах 10–8 – 10–5 Ом×м. Температурный коэффициент проводимости отрицателен, то есть с ростом температуры электропроводность уменьшается.
Вещества, прохождение через которые электрического тока вызывает передвижение вещества в виде ионов (ионная проводимость), называются проводниками второго рода. Типичными проводниками второго рода являются растворы солей, кислот и оснований в воде и некоторых других растворителях, расплавленные соли и некоторые твёрдые соли. Температурный коэффициент электропроводности положителен.
Деление проводников в зависимости от типа проводимости (электронная или ионная) является условным. Известны твёрдые вещества со смешанной проводимостью, например Ag2S, ZnO, Cu2O и др. В некоторых солях при нагревании наблюдается переход от ионной проводимости к смешанной (CuCl).
Движение электронов в металлах до появления электрического поля
То есть, в металлах мы имеем дело с упорядоченной структурой атомов: каждый атом находится на своём конкретном месте.
Как мы уже знаем, вокруг ядра атомов движутся электроны.
Что же даёт возможность появления свободных электрических зарядов?
Дело в том, что дальние электроны (те, которые находятся на самых удалённых от ядра орбитах) довольно слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому. Такое беспорядочное движение электронов чем-то напоминает электронный газ. Если внутри металла нет электрического поля, то движение этих свободных электронов чем-то напоминает движение поднятого в воздух роя мошкары в летний день (Рис. 3).
Рис. 3. Движение электронов внутри металлического проводника ()
Ток смещения в диэлектрике
По определению вектора электрической индукции ($overrightarrow$):
где $<varepsilon >_0$ — электрическая постоянная, $overrightarrow$ — вектор напряженность, $overrightarrow
$ — вектор поляризации. Следовательно, ток смещения можно записать как:
где величина $frac<partial overrightarrow<p>><partial t>$ — плотность тока поляризации. Токи поляризации — токи, которые вызваны движением связанных зарядов, которые принципиально не отличаются от свободных зарядов. Поэтому нет ни чего странного, что токи поляризации порождают магнитное поле. Принципиальная новизна содержится в утверждении, что вторая часть тока смещения ($<varepsilon >_0frac<partial overrightarrow<e>><partial t>$), не связанная с движением зарядов, также порождает магнитное поле. Получается, что в вакууме, любое изменение электрического поля по времени вызывает магнитное поле.
Задай вопрос специалистам и получи ответ уже через 15 минут!
Однако, надо заметить, что сам термин «ток смещения» для диэлектриков имеет какое-то обоснование, так как в них действительно происходит смещение зарядов в атомах и молекулах. Но этот термин применяется и к вакууму, где зарядов нет, значит, нет их смещения.
Электрический ток в металлах
Электроны, перескакивая от одного атома к другому, движутся в том направлении, куда им указывает электрическое поле. Это движение и называется электрическим током в металлах.
Мы знаем, что электрический ток – это направленное, упорядоченное движение заряженных частиц. В металлах в роли движущихся заряженных частиц выступают электроны. В других веществах это могут быть ионы или ионы и электроны.
Движение заряженных частиц (в металлах – электронов) происходит очень медленно (доли миллиметров в секунду). Возникает вопрос: почему же, когда мы нажимаем на выключатель, лампочка загорается практически мгновенно?
Дело в том, что внутри проводников с огромной скоростью (со скоростью света – приблизительно 300 000 километров в секунду) распространяется электрическое поле.
При замыкании цепи поле распространяется практически мгновенно. А уже вслед за полем начинают медленно двигаться электроны, причём сразу по всей цепи. Эту ситуацию можно сравнить с движением воды в водопроводе. Воду заставляет двигаться давление в трубах, которое при открытии крана распространяется практически мгновенно, заставляя «ближайшую» к крану воду выливаться. При этом по трубам движется вся вода под этим самым давлением. Получается, что давление – это аналог электрического поля, а вода – аналог электронов. Как только прекращается действие электрического поля, сразу прекращается упорядоченное движение электрических зарядов.
Как направлено электричество (движение)
Движение тока может осуществляться двумя путями. Направление перемещения заряженных частиц связывают с движением электронов, имеющих положительный заряд. Когда ток возникает благодаря отрицательным электронам, тогда направление принимают противоположным их движению. Это характерно для проводников из металла. Но ток может возникать и в жидкости, и газе, в которых частицы свободно передвигаются по любой траектории из-за отсутствия прочной связи между ними. В этом случае носителям тока будут положительные ионы и отрицательные электроны, а электрический ток идет от «плюса» к «минусу».
Вам это будет интересно Особенности DC тока
Опыт Рикке
Возникает логичный вопрос: а не изменяется ли проводник из-за того, что из него «ушли» электроны? Опыт по подтверждению того, что все электроны одинаковые, был проведён немецким учёным Рикке (Рис. 4) тогда, когда на трамвайных линиях использовали три разных проводника: алюминиевый и два медных.
Рис. 4. Карл Виктор Рикке (
)
Рикке в течение года наблюдал за последовательным соединением трёх проводников: медь + алюминий + медь. Поскольку ток в трамвайных линиях течёт довольно большой, то эксперимент позволял дать однозначный ответ: одинаковы ли электроны, которые являются носителями отрицательного заряда в разных проводниках.
За год масса проводников не изменилась, диффузии не произошло, то есть структура проводников осталась неизменной. Из этого следовал вывод, что электроны могут переходить из одного проводника в другой, но структура их при этом не изменится.
Виды токов
Потоки электронов, имеющиеся в проводящих материалах, могут двигаться всё время в одну сторону либо постоянно менять своё направление. В первом случае они формируют переменный, а во втором – постоянный токи.
Электрическое поле – это?
Переменные потоки образуются под воздействием меняющихся по своей величине и знаку напряжений, прикладываемых к концам проводника, а для получения постоянного токового сигнала используется разность потенциалов одной полярности.
Обратите внимание! Меняющиеся токи протекают по электропроводке любой квартиры, а примером второй разновидности может служить однонаправленное движение электронов в аккумуляторах или батарейках.
Исторически сложилось так, что в цепи постоянного потока за его направление принято считать движение от «плюса» источника питания к его «минусу». Хотя в действительности носители отрицательного заряда перемещаются в прямо противоположном направлении (от «минуса» к «плюсу»). Но принятое ранее условное направление настолько закрепилось в сознании людей, что его оставили неизменным, полагая абсолютно условным значение этого параметра.
Постоянный ток
Для того чтобы разобраться с тем, куда текут переменные токи, следует отталкиваться непосредственно от их определения. В этой ситуации под воздействием переменного потенциала (напряжения) они меняют своё направление с определённой периодичностью.
Важно! В российских бытовых сетях переменное напряжение имеет частоту 50 Герц. С соответствующей периодичностью меняет своё направление и текущий по электропроводке ток.
В зарубежных электрических сетях (в США и Японии, в частности) данная частота составляет 60 Герц, что несколько повышает эффективность с одновременным возрастанием потерь в питающих линиях.
Переменный ток (график)
Действия тока
Поговорим теперь о том, какое действие оказывает электрический ток. За счёт чего он получил такое широкое применение в быту и технике?
Можно выделить три основных действия электрического тока:
1. Тепловое. При прохождении тока проводник нагревается. Это одно из самых главных действий тока, которое используется человеком. Самый простой пример – некоторые бытовые обогреватели (Рис. 5).
Рис. 5. Электрообогреватель ()
2. Химическое. Проводник может изменять химический состав при прохождении по нему тока. В частности, при помощи электрического тока добывают некоторые металлы в чистом виде, выделяя их из различных соединений. К примеру, таким образом получают алюминий (Рис. 6).
Рис. 6. Электролизный цех алюминиевого width=»670″ height=»446″[/img])
3. Магнитное. Если по проводнику течёт ток, то магнитная стрелка вблизи такого проводника изменит своё положение.
Проводимость металлов
Рис. 1. Схема опыта Рикке
Еще одним опытом по подтверждению электронной проводимости металлов стал опыт 1912 года российских ученых Мангельштама и Папалекси, спустя небольшое время проведенный также англичанами Стюартом и Толменом. В ходе этого опыта катушка с большим количеством витков быстро вращалась, а затем резко тормозилась. В результате чего замкнутый вместе с ней в цепь гальванометр показывал наличие небольшого тока (рис. 2).
Рис. 2. Схема опыта Мангельштама-Папалекси
Дело в том, что вместе с раскручиваемой катушкой вращаются, конечно же, и находящиеся в металле электроны. Когда же катушка тормозится, электроны некоторое время продолжают двигаться внутри катушки по инерции, производя таким образом ток.
Сверхпроводимость
Определение. Сверхпроводимость – явление, когда сопротивление проводника становится близким к нулю.
Открытию явления сверхпроводимости предшествовало получение в 1908 году голландцем Камерлингом Оннесом (рис. 4) жидкого гелия. Помещая образец проводника в жидкий гелий, стало возможным наблюдать поведение проводников при сверхнизких температурах (близко к 0 ). И в 1911 году Оннес установил, что ртуть при температуре около 4 К резко приобретает сопротивление, равное нулю.
Рис. 4. Камерлинг Оннес (Источник)
Его опытам с ртутью предшествовали опыты с платиной, в результате которых он установил, что чем чище вещество (чем меньше в нем примесей), тем быстрее уменьшается его сопротивление с уменьшением температуры. Благодаря жидкому состоянию ртути при нормальных условиях, этот металл очень легко было очистить от примесей. И была установлена следующая зависимость удельного сопротивления ртути от низких температур: линейное снижение прерывается скачком к нулю (рис. 5):
Явление сверхпроводимости объясняется с точки зрения квантовой физики.
Электронный газ
Чтобы оценить, как много в металле тех самых электронов проводимости, нужно понимать, что каждый атом металла обеспечивает как минимум один свободный электрон. В среднем, концентрация электронов проводимости составляет:
И в качестве модели поведения свободных электронов можно принять модель газа. Каждый электрон электронного газа ведет себя, как отдельно взятая молекула газа. При появлении внешнего электрического поля на хаотическое движение электронов накладывается упорядоченное движение. Именно это движение и обуславливает электрический ток.