Дешевый пирометр, сравнение с более дорогими моделями
В Интернете можно найти много информации по этому вопросу. В большинстве случаев всё пишется людьми далёкими от ИК термометрии и ИК термометров для контроля температуры тела. Поэтому и информация даётся неполной, несистемной и чаще всего далёкой от истины.
Именно поэтому, мы как разработчики и изготовители медицинских термометров и, в частности, ИК термометров решили по возможности понятным языком рассказать, как устроен ИК термометр, чем он отличается от промышленного пирометра, что влияет на его точность измерения и как сделать так, чтобы эту точность повысить.
Для начала немножко теории…
Любое тело излучает тепловую энергию Е, пропорциональную его температуре поверхности в четвёртой степени и коэффициенту излучения к.
Научившись измерять и обратно преобразовывать эту тепловую энергию в температуру можно измерять температуру поверхности на расстоянии (дистанционно).
Рис.1.Как происходит измерение температуры поверхности пирометром
Любой пирометр содержит некоторую оптическую систему, позволяющую снимать данные (собирать тепловую энергию) с пятна определённой площади S на расстоянии L. Отношение L/D, где D — это диаметр пятна называется оптическим разрешением пирометра. Чем этот параметр больше, тем на большем расстоянии можно измерять температуру конкретного тела и тем дороже прибор.
При помощи оптической системы прибора энергия излучения падает на сенсор ИК термометра (Рис.2).
Рис.2.Устройство сенсора ИК термометра
У современных пирометров сенсор представляет собой миниатюрную термопару, на рабочий спай которой и направлено тепловое излучение контролируемого объекта. Вблизи холодного спая термопары располагается сенсор температуры, в качестве которого чаще применяется термосопротивление.
Электронная схема прибора по термосопротивлению измеряет температуру холодного спая термопары и добавляет к ней вторую часть пропорциональную напряжению с термопары. ИК сенсоры уже давно научились изготавливать полностью в интегральном исполнении. Есть сенсоры с цифровым выходом.
Если бы все тела излучали одинаково, имея равную температуру, то погрешность пирометра определялась бы только точностью его юстировки .
Однако все тела излучают по-разному. Для того чтобы измерить температуру поверхности какого-либо тела достаточно точно, необходимо точно знать его коэффициент изучения к.
Обычно пирометр юстируется на производстве или в метрологической лаборатории при помощи «абсолютно-чёрного тела» (АЧТ), т.е. поверхности, с коэффициентом излучения близким к 1. Затем в память прибора устанавливают реальный, усреднённый коэффициент излучения. Чаще 0,95. Есть однако модели пирометров подороже, в которых потребитель сам устанавливает коэффициент. Но какой – вот в чём вопрос. А коэффициент излучения очень сильно зависит как от материала поверхности, так и от качества обработки, наличия загрязнений, ржавчины, влаги и т.д. В табл. 1 представлены коэффициенты излучения для ряда материалов.
Материал | К |
доска | 0,96 |
бумага | 0,93 |
базальт | 0,72 |
ржавое железо | 0,70 |
Табл. 1 Коэффициент излучения к для нескольких материалов
При неправильно выставленном коэффициенте излучения можно получить погрешность в десятки градусов.
Дешевый пирометр, сравнение с более дорогими моделями
Сталкиваясь по работе с замером температур на контактных площадках в электрических сетях, а так же в отопительных системах и имея в наличии 2 пирометра стоимостью в 10 и 20 раз превышающую данной модели, мне было интересно, как покажет себя не сильно дорогой пирометр из Китая. Кому интересно, прошу под кат! Заказ был оплачен 10 октября, на почте Китая посылка начала свое движение 23 октября. То ли продавец долго не отправлял, то ли завал на местной почте. Срок доставки стандартные 3 недели.
Прибывшая посылка была гораздо меньше тех размеров, что я ожидал. Упаковка стандартная — желтый пакет. Внутри лежал упакованный в пупырку обозреваемый пирометр.
После вскрытия меня ожидал компактный пирометр. Почему компактный? Поймете ниже. А сейчас внешний вид.
Технические характеристики, взятые со страницы продавца: • Диапазон измерений: -50 °C
1022 °F) • Точность: -50 °C
100 °C (± 1.5 °C), 100 °C
550 °C (±1. 5%) • Время отклика: 500 мс • Коэффициент излучения: 0.95 фиксированный • Оптическое разрешение: 12:1 в точке фокуса • Спектральный диапазон: 8
14μm • Температура хранения:-20 °C
140 °F) • Рабочая температура: 0 °C
104 °F) • Рабочая влажность: 10-95% RH, без конденсации, до 30 °C (86 °F) • DC 9В батарея
Внешне пирометр напоминает форму пистолета, с органами управления вместо курка
На левой боковой грани нанесена наклейка с фирмой производителем, моделью, названием прибора и измеряемой температурой. Последняя имеет возможность производить замеры по Фаренгейту и Цельсию.
На правой же, расположена информация об оптическом разрешении и потерях при дальности замеров
Задняя часть включает в себя небольшой экран с подсветкой и 3 органа управления. Остановимся на каждом по-подробнее.
Правая кнопка, символ лампочки, включает и отключает подсветку соответственно. Цвет подсветки белый
Центральная, красная кнопка, переключение между температурными шкалами °C и F
Левая кнопка позволяет включать и выключать лазер для замера
Передняя часть представляет собой 2 окошка: лазерный целеуказатель сверху и окошко оптической системы снизу
На нижней части рукоятки серийный номер и наклейка с какой-то информацией
Изначально в комплект поставки батарея (крона 9В) не входит, поэтому покупаем качественный элемент питания
Для установки батареи необходимо потянуть на себя черную часть рукоятки, для этого на обеих сторонах есть выемки под палец
При открытии крышки становится доступно место для размещения батареи. Так же присутствует наклейка с указанием типа батареи, клемма и какая-то наклейка с иероглифами.
После установки батареи закрываем крышку и делаем пробный запуск
Хочется сразу отметить, что после установки батареи стали заметны зазоры между деталями корпуса, через которые проглядывается оная
Теперь же хочется описать ощущения от использования данного пирометра, устройство очень приятное на ощупь, сборка плотная, не скрипит. Размер позволяет носить во внутреннем кармане куртки или небольшой сумочке.
У продавца существует несколько моделей пирометра под маркировкой GM:
НУ и то для чего все это затевалось! Сравнение с более дорогими моделями пирометров.
По специфике работы приходится работать с данными устройствами, поэтому имею следующие модели: raytek raynger st и Optris MS. У них как и у обозреваемой модели фиксированный коэффициент излучения 0,95. Существуют дорогие версии пирометров где возможно изменять этот коэффициент. Характеризует он свойства поверхности объекта, температуру которого измеряет направленный на него пирометр.
Обе модели имеют высокую стоимость, $220 за первую модель и €140 за вторую. Raytek raynger st уже довольно таки старенькая модель, сертификаты на него уже не делают. Производитель RAYTEK, США
Оптическое разрешение у этой модели такое же, как и у обозреваемого устройства, 12:1. Органы управления скрыты в отсеке под батареей
Имеет резьбу на основании рукоятки под установку на штатив
Имел богатую комплектацию при покупке, пластиковый чемодан, куча документации, шнурок с карабином, чехол
Optris MS. Производитель:OptrisGmbH, Германия. Выглядит как пульт от телевизора изогнутый на конце
Оптическое разрешение больше чем у обозреваемой модели и raynger’а 20:1. Имеет разъем miniUSB для подключения к ПК
На лицевой панели небольшой экран с органами управления, совпадающими по функционалу с обозреваемым пирометром
Имеет зеленую подсветку экрана и отображение, при очереди замеров, максимальное и минимальное значение
Так же есть резьба для установки на штатив и ушко для крепления шнурка на руку
У 2-х моделей из 3-х имеется мушка и задний целик либо просто мушка. Optris MS не имеет ничего
Хват так же у двух одинаковый, правда raynger st больше GM550 в 2 раза это точно, Optris снова выделяется своей формой
50см, Слева направо: GM550 — 23.8°C, raynger st — 23,8°C, Optris MS — 23,7°C
100см, Слева направо: GM550 — 23°C, raynger st — 24,2°C, Optris MS — 22,9°C
150см, Слева направо: GM550 — 22,8°C, raynger st — 24,2°C, Optris MS — 22,9°C
Если брать за эталонный пирометр от RAYTEK, то мы видим, что при увеличении расстояния до объекта он прибавляет 0,4°C и держит эту температуру. В то время как Optris MS изначально показал отличную от 2-х одинаковых температур и уменьшался при отдалении от точки замера. GM550 при удалении более чем на метр от точки замера, уменьшал температуру последней на 1°C. Но давайте не будем так категоричны, ведь по сравнению со стоимостью других $220 и €140 за его $17 можно простить такие недостатки. Но только если вам не нужен пирометр с погрешностью 0,1 градус. Мне для замеров нагрева контактов в электрических сетях погрешность GM550 не сыграет существенной роли. В конечном итоге выбор всегда за вами. Лично я доволен пирометром из Китая полностью.
Продавец любезно согласился сделать скидку, конечная цена 15$ при указании в комментариях к заказу «sbazarov91»
Итак, какие факторы влияют на точность измерения промышленного пирометра?
Перечислим несколько основных факторов:
- точность юстировки пирометра на АЧТ при к =1,
- точность задания к-коэффициента излучения,
- чистота поверхности измерения, наличие влаги, пыли и т.д.,
- временной фактор, влияющий на старение оптической системы и эл. компонентов,
- наличие «засветки» от посторонних источников,
- соответствие диаметра «пятна» и размеров контролируемой поверхности (диаметр пятна должен быть заведомо меньше).
Какая реальная точность измерения, указывается в документации на промышленные пирометры среднего ценового диапазона? +/-1% от измеряемой величины, т.е. примерно +/-0,4°С при измерении температуры поверхности нагретой до +40°С. Давайте запомним это значение. Оно нам пригодится далее.
Погрешность при отражении луча и коэффициент излучения
Когда вы измеряете градусы контактным термометром, вы по факту делаете замер только температуры тела. А вот если вы попытаетесь тоже самое проделать на некотором расстоянии, то вы попутно измерите все те волны и лучи, которые не зависимо от вашего желания так или иначе попадают в объектив пирометра.
А попадает туда не только то излучение, которое испускает тело.
И если при этом не знать как правильно настраивать пирометр, то прибор будет показывать полную белиберду.
Что это за помехи, которые влияют на точность измерения? При работе с инструментом в его объектив попадает 3 составляющих:
- лучи, которые тело пропускает через себя
- лучи, которые оно испускает (это его собственная температура)
- отраженные лучи от окружающих предметов
Пропускаемые лучи в расчетах обычно не учитываются, потому то большинство тел попросту непрозрачны для них. Поэтому в расчет берутся только две величины:
- коэффициент излучения или коэффициент эмиссии
- коэффициент отражения
Причем вас в большей степени должен интересовать именно коэфф. излучения, так как это и есть та самая температура, которую имеет тело.
Коэффициент эмиссии (излучения) — это величина, которая показывает сколько процентов от всего излучения составляет именно тепло. Остальное может быть отраженный свет или свет, который проходит сквозь тело.
В этом плане стоит заметить, что пирометр не может измерять температуру предмета, который находится за стеклом, в дыму или тумане.
Стекло для оптики прибора – это не прозрачный элемент, а отдельный объект, выделяющий свое собственное излучение. Поэтому его нужно убирать из области замера.
Большинство тел и поверхностей нас окружающих, имеют коэффициент излучения равный 0,95. Именно такие заводские настройки изначально выставляются на приборах.
Причем на дешевых моделях, они жестко встроены в программную составляющую раз и навсегда, и изменить вы их не сможете. На более дорогих аппаратах, данный коэфф. можно регулировать вручную.
Для чего это необходимо делать? У разных по составу и свойствам тел, коэфф. излучения отличается. И чем он выше, тем точнее будут результаты измерения температуры пирометром.
Например, если он составляет величину К=0,95, то у вас на отражение остается всего 5%. Ошибка, которую будут вносить эти самые 5%, будет крайне мала и ей можно пренебречь.
Но дело в том, что на практике как в электричестве, так и в отоплении, нас мало интересуют предметы с высоким коэффициентом излучения. К таковым относятся стены, пол, поверхность стола, предметы мебели и т.д.
Пирометром мы в первую очередь измеряем медные или алюминиевые контакты, радиаторы батарей отопления, трубы, хромированные полотенцесушители и т.п.
Все они имеют яркую блестящую поверхность, которая как раз-таки и вносит существенную ошибку в данные замеров. При этом есть определенный нюанс.
В чём отличия между промышленным пирометром и ИК термометром для измерения температуры тела?
Итак мы кратко рассказали вам о работе промышленного пирометра, о том, какие факторы влияют на его точность измерения. Теперь поговорим о ИК термометре для измерения температуры тела.
Вообще зачем нужен ИК термометр для измерения температуры, когда есть контактные электронные термометры, которые при правильном изготовлении обеспечивают нужную точность? Главное преимущество ИК термометра — скорость измерения, около 1 с. В табл. 2 представлены сравнительные характеристики двух методов измерения.
Параметр | ИК термометр | Контактный термометр |
Удобство | + | — |
Время измерения | + (около 1 с.) | — (более 30 сек.) |
Точность измерения | — | + |
Измерение разности температур и распределения температуры | + | — |
Табл. 2 Сравнение ИК термометра и контактного термометра
ИК термометр удобен, потому что измеряет быстро и дистанционно. Достаточно поднести прибор ко лбу на расстояние несколько сантиметров, нажать на кнопку и всё. Температура измерена. Но с какой точностью? А это самое больное место этих приборов и об этом мы поговорим далее. Но где ИК термометры не имеют себе равных в медицине — это в измерении разницы температур. Например это контроль распределения температуры по телу для выявления критических мест, связанных с какими-либо нарушениями. Или измерение разности температуры тела между людьми, находящимися длительное время в одних условиях. Для этих целей ИК термометр просто великолепен и никто его не сможет заменить.
Приведём пример. Самолёт совершил посадку. Работник Роспотребнадзора, вооружённый ИК термометром, зашёл на борт и последовательно замерил температуру каждому пассажиру. Неважно, какую абсолютную величину температуры он получает. Важна разность измеренной температуры между пассажирами. Они долгое время находились в равных условиях и повышенная температура нескольких пассажиров относительно среднего измеренного значения может трактоваться как болезнь. У этих пассажиров после изоляции их от основной массы нужно будет измерить температуру точно контактным электронным термометром. Допустим, температура пассажиров оказалась равна 34,7…36,1°С, а у двух пассажиров: 36,6°С. Это означает, что у этих двух пассажиров имеется повышенная температура. Дальнейшие измерения точным контактным термометром смогут подтвердить, что их температура равна на самом деле 37…38°С. Сейчас, к сожалению, об этом не знают.
В табл. 3 мы кратко показали, чем отличается промышленный пирометр от ИК термометра температуры тела.
Промышленный пирометр | ИК термометр температуры тела | |
от -50 до +650 °С, 1% ИВ + 1°С | диапазон измерения и точность | от 32,0 до 42,9°С, ±0,2°C |
линза или без линзы | оптическая система | «ракушка» |
любое | расстояние до объекта измерения | 0…3 см |
прямое измерение | способ измерения | расчет температуры тела по температуре лба и температуре окружающей среды |
Табл. 3 Основные отличия промышленного пирометра от ИК термометра температуры тела
У ИК термометра очень узкий диапазон измерения и небольшое расстояние до поверхности измерения. У большинства ИК термометров в паспорте приводится точность измерения +/-0,2…0,3°С. Скажем сразу, что верить этому значению нельзя. С большой натяжкой это может быть точность измерения температуры абсолютно-чёрного тела, проводимая в лабораторных условиях при заданных параметрах окружающей среды. Это даже не точность контроля температуры поверхности кожи и уж тем более не точность измерения температуры тела.
Грустно то, что в нашей стране продаются ИК термометры, имеющие Регистрационное удостоверение Росздравнадзора, у которых в паспорте указана точность измерения температуры тела +/-0,1°С! Получается так, что Российская компания-дистрибьютор покупает в КНР приборы, имеющие точность +/-0,3°С, делает документацию на русском, где указывается точность уже +/-0,1°С и продаёт эти приборы. Почему так происходит? Да потому, что ИК термометры у нас в стране отнесены к медицинским термометрам, а им ГОСТом предписано иметь точность +/-0,1°С. Получается, что приборы подстроили под норматив.
Так какую же реальную погрешность имеют ИК термометры, спросите вы? Огромную, если не выполнять множество требований к процессу измерения. А ведь большинство граждан их не выполняет или физически не может выполнить. Поэтому прежде чем купить домой ИК термометр, хорошо подумайте. Им нужно уметь пользоваться.
Как работает ИК термометр температуры тела?
ИК термометр для измерения температуры тела — это в определённом плане прибор более сложный, чем промышленный пирометр. Прибор имеет два режима работы: поверхность (sгrface) и тело (body). В режиме surface прибор работает как обычный пирометр, измеряя температуру поверхности и его можно использовать для различных хозяйственных нужд. В режиме body, который нас как раз интересует, прибор вычисляет значение температуры тела по температуре поверхности лба, температуре окружающей среды, используя введённые в него усреднённые коэффициенты расчёта. Данные коэффициенты учитывают теплопроводность и толщину различных участков головы (кожи, кости и т.д.). Понятно, что у разных людей, особенно разных расс, у различных возрастных групп эти параметры отличаются и это очень сильно сказывается на точности измерений. На Рисунке 3 показана температура тела как функция этих параметров.
Рисунок 3. Температура тела, как функция большого количества параметров
Итак, к погрешности измерения температуры поверхности в режиме body добавляется погрешность связанная с различием у людей различных физических параметров и погрешность измерения температуры окружающей среды, а также погрешность связанная с тем, что температура прибора может быть не равна температуре окружающей среды, в которой находится испытуемый. Последнее очень важно. Прибор и человек до момента измерения должны находиться длительное время при одной и той же температуре. Теперь вам должно быть понятно, почему при измерении температуры у людей, входящих в здание, так сильно разнится температура. Ведь до входа в здание они находились в различных условиях. Кто-то пришёл, кто-то приехал на авто и т.д.
Перечислим основные правила более-менее точного измерения температуры тела ИК термометром.
Основные правила, которые необходимо соблюдать при измерении температуры медицинским пирометром:
— пирометр должен иметь температуру окр. среды (выдержан не менее 30 мин.), — необходимо предварительно вытереть насухо лоб, — предотвратить сквозняки, падение прямых лучей солнечного света, влияние нагревательных приборов, — предварительно убрать со лба косметику, волосы, — расстояние от лба: 1…3 см, — необходимо провести несколько измерений, чтобы исключить случайные значения.
Так может ли ИК термометр иметь точность +/-0,1°С при измерении температуры тела? Конечно нет. Если человек очень хорошо понимает принцип работы ИК термометра и как им пользоваться, то он может использовать его для экспресс контроля температуры тела. Но любому человеку использовать этот прибор нельзя. Может и трагедия случиться. Представьте себе картину. У маленького ребёнка горячка, родители его раздели, обдувают вентилятором и время от времени контролируют температуру ИК термометром. Что они измерят? Всё что угодно. Самая большая опасность, если они вместо 40,0°С измерят 37,0, успокоятся и завершат процедуры.
ИК термометром для измерения температуры тела может пользоваться не каждый. Единственное, в чём он очень хорош — это в вычленении людей с повышенной температурой среди других людей, находящихся длительное время в одинаковых условиях.
Почему пирометр врет — причины
Прибор этот безусловно хороший, но давайте подробнее рассмотрим вопрос, как же им правильно пользоваться. Ведь простое наведение лазерного луча и считывание показаний на электронном табло, не всегда гарантирует и дает корректные результаты.
При замерах существует множество погрешностей, о которых большинство пользователей даже не догадывается. Измерение температур при помощи оптического прибора, отличается от измерения температуры приборами контактными.
Как правильно измерить температуру пирометром — ошибки и правила.
Пирометр — это наиболее доступный и безопасный прибор для бесконтактного измерения температуры.
Причем он широко используется как в электричестве, так и в системах теплоснабжения.
Однако область его применения только этими отраслями не ограничивается. С его помощью замеряют температуру движущихся частей механизмов. Например, чтобы выяснить греется подшипник на двигателе или нет.
Выявляют перепады температур на смежных поверхностях – цилиндры компрессора в холодильных установках, или отдельные детали внутри автомобиля.
Допустим у вас греется двигатель по неизвестной причине и вам нужно выяснить почему. Для этого пирометром сначала замеряете температуру на выходном патрубке термостата и сравниваете ее с температурой радиатора.
Если разница очень большая, тогда скорее всего виноват термостат.
Еще один из вариантов применения – измерение температуры раскаленного металла для его правильной обработки.
Если это делать классическими термометрами, то вы потеряете драгоценное время на нагрев самой термопары. А беспроводным термокрасным пирометром, все это занимает буквально мгновение.
Вот сводная графическая миниатюра и расшифровка возможностей и областей применения пирометров:
Прибор этот безусловно хороший, но давайте подробнее рассмотрим вопрос, как же им правильно пользоваться. Ведь простое наведение лазерного луча и считывание показаний на электронном табло, не всегда гарантирует и дает корректные результаты.
При замерах существует множество погрешностей, о которых большинство пользователей даже не догадывается. Измерение температур при помощи оптического прибора, отличается от измерения температуры приборами контактными.
Вот основные ошибки, которые допускают новички:
- не учитывается материал, из которого сделан предмет измерения
- замеры производятся через стекло или в пыльном, влажном помещении
- температура самого пирометра значительно отличается от температуры окружающей среды
- измерения происходят слишком далеко от объекта, без учета конуса расширения луча
- экономные «специалисты» пытаются работать прибором наподобие тепловизора на больших площадях, не учитывая при этом частоту обновления показаний девайса
Рассмотрим все эти моменты более подробно.
Когда вы измеряете градусы контактным термометром, вы по факту делаете замер только температуры тела. А вот если вы попытаетесь тоже самое проделать на некотором расстоянии, то вы попутно измерите все те волны и лучи, которые не зависимо от вашего желания так или иначе попадают в объектив пирометра.
А попадает туда не только то излучение, которое испускает тело.
И если при этом не знать как правильно настраивать пирометр, то прибор будет показывать полную белиберду.
Что это за помехи, которые влияют на точность измерения? При работе с инструментом в его объектив попадает 3 составляющих:
- лучи, которые тело пропускает через себя
- лучи, которые оно испускает (это его собственная температура)
- отраженные лучи от окружающих предметов
Пропускаемые лучи в расчетах обычно не учитываются, потому то большинство тел попросту непрозрачны для них. Поэтому в расчет берутся только две величины:
- коэффициент излучения или коэффициент эмиссии
- коэффициент отражения
Причем вас в большей степени должен интересовать именно коэфф. излучения, так как это и есть та самая температура, которую имеет тело.
В этом плане стоит заметить, что пирометр не может измерять температуру предмета, который находится за стеклом, в дыму или тумане.
Стекло для оптики прибора – это не прозрачный элемент, а отдельный объект, выделяющий свое собственное излучение. Поэтому его нужно убирать из области замера.
Большинство тел и поверхностей нас окружающих, имеют коэффициент излучения равный 0,95. Именно такие заводские настройки изначально выставляются на приборах.
Причем на дешевых моделях, они жестко встроены в программную составляющую раз и навсегда, и изменить вы их не сможете. На более дорогих аппаратах, данный коэфф. можно регулировать вручную.
Для чего это необходимо делать? У разных по составу и свойствам тел, коэфф. излучения отличается. И чем он выше, тем точнее будут результаты измерения температуры пирометром.
Например, если он составляет величину К=0,95, то у вас на отражение остается всего 5%. Ошибка, которую будут вносить эти самые 5%, будет крайне мала и ей можно пренебречь.
Но дело в том, что на практике как в электричестве, так и в отоплении, нас мало интересуют предметы с высоким коэффициентом излучения. К таковым относятся стены, пол, поверхность стола, предметы мебели и т.д.
Пирометром мы в первую очередь измеряем медные или алюминиевые контакты, радиаторы батарей отопления, трубы, хромированные полотенцесушители и т.п.
Все они имеют яркую блестящую поверхность, которая как раз-таки и вносит существенную ошибку в данные замеров. При этом есть определенный нюанс.
К примеру, если у вас предмет имеет температуру окружающей среды, то излучает и отражает он приблизительно одну и ту же температуру. Но если его при этом нагреть, то сразу же появится погрешность, существенно искажающая реальные данные.
Чтобы удостоверится во всем вышесказанном, можете сами провести простейший эксперимент. Возьмите блестящую кастрюлю и какую-нибудь книжку.
Далее проведите замеры на них одним и тем же пирометром. Чтобы повысить точность эксперимента, старайтесь делать замеры в одной точке.
Результаты у вас точно не будут одинаковыми, правда сильной разницы вы не увидите. Если перепроверить это дело контактным термометром, то отклонения будут составлять всего 2-3 градуса.
Но это все будет справедливо только при комнатной температуре предметов. А что будет, если в кастрюлю залить горячую воду?
Измерения в этом случае тут же пойдут в разнос.
Температура «горячей» кастрюли Реальная температура с верным коэффициентом
Это говорит о том, что температура нагретых гладких блестящих поверхностей, просто так пирометром не измеряется.
Поэтому, когда в видеороликах показывают, насколько элементарно бесконтактным измерителем определить температуру батарей или контактов, не сильно доверяйте данной рекламе.
В большинстве случаев, нельзя просто так направить луч, нажать курок и тут же получить правильный результат измерения на табло. На блестящих нагретых предметах все пирометры начинают сильно врать.
И зависит эта погрешность напрямую от коэффициента излучения. Вот подробная таблица коэффициентов излучения различных материалов. Этими данными необходимо пользоваться каждый раз при замерах пирометрами.
Чтобы повысить точность измерений, стоит покупать более дорогие модели с возможностью выставления этих коэфф. внутри программных настроек.
Замерить температуру материалов, которых нет в таблице, можно двумя способами. Использовать “мишень” с известным коэфф., накладывая ее на измеряемый объект.
Или сначала определить контактным термометром температуру поверхности, и затем меняя значения в приборе, добиться примерного совпадения.
Процесс правильного замера пирометром будет выглядеть следующим образом.
Определяете материал из которого сделан предмет (сталь, медь, алюминий). Далее в таблице ищите его коэффициент излучения и заносите эту поправку в сам прибор.
И только после этого направляете луч инфракрасного пирометра на объект.
При таком измерении вы действительно получите близкие результаты к фактической температуре. Ну а те девайсы, в которых заводом жестко установлен коэфф.=0.95, попросту будут врать при каждом замере.
Под каким бы углом вы не направляли луч, как близко бы не подносили прибор к поверхности, искажения в любом случае будут. И здесь речь уже идет не об одном или двух градусах.
Погрешность может составлять десятки единиц!
Кстати, отдельно стоит сказать о расстоянии. По сути, луч пирометра измеряет температуру некой точки или круга.
При этом не путайте точку лазерного целеуказателя и пятно замера. Это разные вещи. Они отличаются размерами на несколько порядков.
Если вы находитесь на большом расстоянии от объекта, то и это пятно или круг увеличиваются по площади. Соответственно для более точных измерений, прибор следует подносить как можно ближе.
Например, у большинства моделей, конус который они видят, имеет соотношение 12 к 1.То есть на расстоянии в 1.2 метра, вы можете без погрешности измерить температуру тела диаметром 10см, не более.
Хоть это и считается нормальным параметром, но лучше подносить прибор поближе. Так как при замере у вас может дрогнуть рука, либо прицел собьется, и в итоге вместе с требуемой поверхностью, вы измерите и соседнюю, которая внесет свой вклад в общие показания.
Так как указано на фото ниже, измерять температуру модульных автоматов не желательно. Вы невольно вместо одной фазы, захватите и соседнюю, что внесет ошибку в данные. Расстояние между ними слишком маленькое.
То же самое относится и к замерам клеммных колодок и зажимов. Подносить пирометр к ним нужно максимально близко.
Еще не забывайте про температуру окружающей среды. Многие пользователи жалуются, что отдельные модели пирометров, начинают безбожно врать при температурах ниже комнатной.
То есть, они берут прибор, выходят в котельную, подвал или гараж и там пробуют им “пострелять” температуру. В итоге получают совершенно странные результаты.
Дело здесь в том, что любой электроникой, тем более измерительной, нельзя пользоваться пока температура прибора не выровняется с температурой окружающей его среды.
Вынесли пирометр на улицу или в гараж, выдержите его минут 10-20, и только после этого приступайте к измерениям.
Речь конечно не идет о том, что прибор нужно замораживать до минусовых температур. Здесь он врать, скорее всего будет безбожно, так как не рассчитан на работу в таких условиях. В остальных случаях, благодаря такой “выдержке”, погрешность уменьшается.
Еще один важный параметр пирометра помимо точности – частота обновления показаний. Особо важно иметь высокую частоту при сканировании и сравнении температур на больших поверхностях.
Прибор в этом случае, как бы имитирует работу тепловизора и ищет максимумы и минимумы.
Очень хорошими показателями считаются результаты от 250мс и меньше. Обладают подобными параметрами только известные бренды. Например, тот же Fluk.
Какой вывод из всего вышесказанного можно сделать? Безусловно, пирометр штука полезная, но применять его нужно там, где действительно требуется именно бесконтактное измерение температуры.
Например, электрические контакты находящиеся под напряжением. Здесь он действительно помогает безопасно выявить плохое соединение еще до того, как ситуация станет критичной.
Не всем электрикам в этом деле доступны тепловизоры.
А вот для людей профессионально занимающихся системами отопления, подобные девайсы оказываются не нужными, и в некоторой степени даже вредными. Замерять температуру отопления пирометрами очень сложно.
Даже на крашенной белой глянцевой поверхности радиатора, достаточно три раза щелкнуть пирометром по одному месту, и у вас получится три разных значения температуры. Не говоря уже про хромированные трубы.
Если у вас блестящие медные трубы на выходе из котла, то замеры могут показать разбежку в 20 и более градусов, по сравнению с датчиком котла. Вот и думайте после этого, что же в системе неисправно.
На практике появляется слишком много факторов, искажающих реальное состояние дел. Чтобы добиться приемлемых результатов измерений на трубах и батареях, придется брать некую пленку или малярный скотч с постоянным коэффициентом отражения, наклеивать эту штуку на поверхность, и только после этого проводить измерения.
Спрашивается, зачем создавать себе такие сложности, если есть более эффективные контактные термометры. Время замера у которых всего несколько секунд и гарантированно точный результат до десятых долей градуса появляется у вас на экране.
Что касается теплых полов, здесь не все однозначно.
Например, температуру стяжки пирометром еще можно измерить довольно точно. А вот если она будет закрыта плиткой, то погрешность моментально возрастает.
Производители безусловно знают об этих проблемах и постоянно совершенствуют приборы. Поэтому если уж и собрались покупать пирометр, выбирайте качественную модель.
Хорошие варианты можно подобрать и заказать вот здесь.
Есть относительно недорогие модели, снабженные выносным датчиком термопары.
С его помощью можно составлять и вносить собственные таблицы поправочных коэффициентов любых материалов. Один раз делаете замер нужной поверхности датчиком, сравниваете результат и вносите корректировку.
После этого можно спокойно стрелять лучом пирометра и не бояться ошибок. У китайцев такую модель можно заказать отсюда.
Если вам интересна эта тема и хочется заниматься измерениями пирометром более профессионально, а не только на бытовом уровне, скачайте и ознакомьтесь с двумя полезными брошюрами по данной тематике:
Почему врёт бесконтактный ИК термометр (пирометр)
В данной статье мы расскажем именно о медицинских ИК термометрах, т.е. о приборах, предназначенных для измерения температуры тела, а также о том, от чего зависит точность пирометров.
В Интернете можно найти много информации по этому вопросу. В большинстве случаев всё пишется людьми далёкими от ИК термометрии и ИК термометров для контроля температуры тела. Поэтому и информация даётся неполной, несистемной и чаще всего далёкой от истины.
Именно поэтому, мы как разработчики и изготовители медицинских термометров и, в частности, ИК термометров решили по возможности понятным языком рассказать, как устроен ИК термометр, чем он отличается от промышленного пирометра, что влияет на его точность измерения и как сделать так, чтобы эту точность повысить.
Для начала немножко теории.
Любое тело излучает тепловую энергию Е, пропорциональную его температуре поверхности в четвёртой степени и коэффициенту излучения к.
Научившись измерять и обратно преобразовывать эту тепловую энергию в температуру можно измерять температуру поверхности на расстоянии (дистанционно).
Рис.1.Как происходит измерение температуры поверхности пирометром
Любой пирометр содержит некоторую оптическую систему, позволяющую снимать данные (собирать тепловую энергию) с пятна определённой площади S на расстоянии L. Отношение L/D, где D — это диаметр пятна называется оптическим разрешением пирометра. Чем этот параметр больше, тем на большем расстоянии можно измерять температуру конкретного тела и тем дороже прибор.
При помощи оптической системы прибора энергия излучения падает на сенсор ИК термометра (Рис.2).
Рис.2.Устройство сенсора ИК термометра
У современных пирометров сенсор представляет собой миниатюрную термопару, на рабочий спай которой и направлено тепловое излучение контролируемого объекта. Вблизи холодного спая термопары располагается сенсор температуры, в качестве которого чаще применяется термосопротивление.
Электронная схема прибора по термосопротивлению измеряет температуру холодного спая термопары и добавляет к ней вторую часть пропорциональную напряжению с термопары. ИК сенсоры уже давно научились изготавливать полностью в интегральном исполнении. Есть сенсоры с цифровым выходом.
Если бы все тела излучали одинаково, имея равную температуру, то погрешность пирометра определялась бы только точностью его юстировки .
Однако все тела излучают по-разному. Для того чтобы измерить температуру поверхности какого-либо тела достаточно точно, необходимо точно знать его коэффициент изучения к.
Обычно пирометр юстируется на производстве или в метрологической лаборатории при помощи «абсолютно-чёрного тела» (АЧТ), т.е. поверхности, с коэффициентом излучения близким к 1. Затем в память прибора устанавливают реальный, усреднённый коэффициент излучения. Чаще 0,95. Есть однако модели пирометров подороже, в которых потребитель сам устанавливает коэффициент. Но какой – вот в чём вопрос. А коэффициент излучения очень сильно зависит как от материала поверхности, так и от качества обработки, наличия загрязнений, ржавчины, влаги и т.д. В табл. 1 представлены коэффициенты излучения для ряда материалов.
Материал | К |
доска | 0,96 |
бумага | 0,93 |
базальт | 0,72 |
ржавое железо | 0,70 |
Табл. 1 Коэффициент излучения к для нескольких материалов
При неправильно выставленном коэффициенте излучения можно получить погрешность в десятки градусов.
Итак, какие факторы влияют на точность измерения промышленного пирометра?
Перечислим несколько основных факторов:
- точность юстировки пирометра на АЧТ при к =1,
- точность задания к-коэффициента излучения,
- чистота поверхности измерения, наличие влаги, пыли и т.д.,
- временной фактор, влияющий на старение оптической системы и эл. компонентов,
- наличие «засветки» от посторонних источников,
- соответствие диаметра «пятна» и размеров контролируемой поверхности (диаметр пятна должен быть заведомо меньше).
Какая реальная точность измерения, указывается в документации на промышленные пирометры среднего ценового диапазона? +/-1% от измеряемой величины, т.е. примерно +/-0,4 ° С при измерении температуры поверхности нагретой до +40 ° С. Давайте запомним это значение. Оно нам пригодится далее.
В чём отличия между промышленным пирометром и ИК термометром для измерения температуры тела?
Итак мы кратко рассказали вам о работе промышленного пирометра, о том, какие факторы влияют на его точность измерения. Теперь поговорим о ИК термометре для измерения температуры тела.
Вообще зачем нужен ИК термометр для измерения температуры, когда есть контактные электронные термометры, которые при правильном изготовлении обеспечивают нужную точность? Главное преимущество ИК термометра — скорость измерения, около 1 с. В табл. 2 представлены сравнительные характеристики двух методов измерения.
Параметр | ИК термометр | Контактный термометр |
Удобство | + | — |
Время измерения | + (около 1 с.) | — (более 30 сек.) |
Точность измерения | — | + |
Измерение разности температур и распределения температуры | + | — |
Табл. 2 Сравнение ИК термометра и контактного термометра
ИК термометр удобен, потому что измеряет быстро и дистанционно. Достаточно поднести прибор ко лбу на расстояние несколько сантиметров, нажать на кнопку и всё. Температура измерена. Но с какой точностью? А это самое больное место этих приборов и об этом мы поговорим далее. Но где ИК термометры не имеют себе равных в медицине — это в измерении разницы температур. Например это контроль распределения температуры по телу для выявления критических мест, связанных с какими-либо нарушениями. Или измерение разности температуры тела между людьми, находящимися длительное время в одних условиях. Для этих целей ИК термометр просто великолепен и никто его не сможет заменить.
Приведём пример. Самолёт совершил посадку. Работник Роспотребнадзора, вооружённый ИК термометром, зашёл на борт и последовательно замерил температуру каждому пассажиру. Неважно, какую абсолютную величину температуры он получает. Важна разность измеренной температуры между пассажирами. Они долгое время находились в равных условиях и повышенная температура нескольких пассажиров относительно среднего измеренного значения может трактоваться как болезнь. У этих пассажиров после изоляции их от основной массы нужно будет измерить температуру точно контактным электронным термометром. Допустим, температура пассажиров оказалась равна 34,7…36,1 ° С, а у двух пассажиров: 36,6 ° С. Это означает, что у этих двух пассажиров имеется повышенная температура. Дальнейшие измерения точным контактным термометром смогут подтвердить, что их температура равна на самом деле 37…38 ° С. Сейчас, к сожалению, об этом не знают.
В табл. 3 мы кратко показали, чем отличается промышленный пирометр от ИК термометра температуры тела.
Промышленный пирометр | ИК термометр температуры тела | |
диапазон измерения и точность | ||
оптическая система | «ракушка» | |
любое | расстояние до объекта измерения | 0. 3 см |
способ измерения |
Табл. 3 Основные отличия промышленного пирометра от ИК термометра температуры тела
У ИК термометра очень узкий диапазон измерения и небольшое расстояние до поверхности измерения. У большинства ИК термометров в паспорте приводится точность измерения +/-0,2…0,3 ° С. Скажем сразу, что верить этому значению нельзя. С большой натяжкой это может быть точность измерения температуры абсолютно-чёрного тела, проводимая в лабораторных условиях при заданных параметрах окружающей среды. Это даже не точность контроля температуры поверхности кожи и уж тем более не точность измерения температуры тела.
Грустно то, что в нашей стране продаются ИК термометры, имеющие Регистрационное удостоверение Росздравнадзора, у которых в паспорте указана точность измерения температуры тела +/-0,1 ° С! Получается так, что Российская компания-дистрибьютор покупает в КНР приборы, имеющие точность +/-0,3 ° С, делает документацию на русском, где указывается точность уже +/-0,1 ° С и продаёт эти приборы. Почему так происходит? Да потому, что ИК термометры у нас в стране отнесены к медицинским термометрам, а им ГОСТом предписано иметь точность +/-0,1 ° С. Получается, что приборы подстроили под норматив.
Так какую же реальную погрешность имеют ИК термометры, спросите вы? Огромную, если не выполнять множество требований к процессу измерения. А ведь большинство граждан их не выполняет или физически не может выполнить. Поэтому прежде чем купить домой ИК термометр, хорошо подумайте. Им нужно уметь пользоваться.
Как работает ИК термометр температуры тела?
ИК термометр для измерения температуры тела — это в определённом плане прибор более сложный, чем промышленный пирометр. Прибор имеет два режима работы: поверхность (sгrface) и тело (body). В режиме surface прибор работает как обычный пирометр, измеряя температуру поверхности и его можно использовать для различных хозяйственных нужд. В режиме body, который нас как раз интересует, прибор вычисляет значение температуры тела по температуре поверхности лба, температуре окружающей среды, используя введённые в него усреднённые коэффициенты расчёта. Данные коэффициенты учитывают теплопроводность и толщину различных участков головы (кожи, кости и т.д.). Понятно, что у разных людей, особенно разных расс, у различных возрастных групп эти параметры отличаются и это очень сильно сказывается на точности измерений. На Рисунке 3 показана температура тела как функция этих параметров.
Рисунок 3. Температура тела, как функция большого количества параметров
Итак, к погрешности измерения температуры поверхности в режиме body добавляется погрешность связанная с различием у людей различных физических параметров и погрешность измерения температуры окружающей среды, а также погрешность связанная с тем, что температура прибора может быть не равна температуре окружающей среды, в которой находится испытуемый. Последнее очень важно. Прибор и человек до момента измерения должны находиться длительное время при одной и той же температуре. Теперь вам должно быть понятно, почему при измерении температуры у людей, входящих в здание, так сильно разнится температура. Ведь до входа в здание они находились в различных условиях. Кто-то пришёл, кто-то приехал на авто и т.д.
Перечислим основные правила более-менее точного измерения температуры тела ИК термометром.
Основные правила, которые необходимо соблюдать при измерении температуры медицинским пирометром:
Так может ли ИК термометр иметь точность +/-0,1 ° С при измерении температуры тела? Конечно нет. Если человек очень хорошо понимает принцип работы ИК термометра и как им пользоваться, то он может использовать его для экспресс контроля температуры тела. Но любому человеку использовать этот прибор нельзя. Может и трагедия случиться. Представьте себе картину. У маленького ребёнка горячка, родители его раздели, обдувают вентилятором и время от времени контролируют температуру ИК термометром. Что они измерят? Всё что угодно. Самая большая опасность, если они вместо 40,0 ° С измерят 37,0, успокоятся и завершат процедуры.
ИК термометром для измерения температуры тела может пользоваться не каждый. Единственное, в чём он очень хорош — это в вычленении людей с повышенной температурой среди других людей, находящихся длительное время в одинаковых условиях.
Пирометр DT-500. Что можно попытаться сделать, если он врет?!
Дело было вечером, делать было нечего, а игры малость поднадоели.
И решил я купить себе пирометр, так сказать промышленный. Чтобы мерить высокие температуры. Ну как высокие?! Хотя бы до 500 градусов по Цельсию. Вот и купил собственно говоря его, DT-500. Но он нагло врал и не краснел, ибо был уже красный. Вот об этом и пойдет речь: Что делать? и Как исправить?
Собственно говоря, будет обзор о том, как можно попытаться исправить/откалибровать показания подобного пирометра, если он показывает не те температуры, что должен. Если еще не надоело, прошу под кат.
В общем, купил его со скидкой и был рад, что не дорого. Когда получил его, был еще больше рад. Но радость длилась аккурат до начала его юзания/проверки. В итоге мало того, что «прицел был сбит» (луч светил влево и вверх), так еще он и температуру показывал не верно, если даже его вплотную окошком-приемником подносил к проверяемой поверхности.
Если кто повнимательней/наблюдательней/глазастей, могли заметить, что сверху у пирометра некая светлая полоска – это я так прицел проверял. Вставил полоску бумаги в шов пирометра и проверял точность направления луча по горизонтали.
Пришлось решать проблему с продавцом в переписке, благо он сам предложил мне открыть спор и потребовать часть денег обратно. Но суть, как говорится, проблемы не в этом и точности пирометру это не прибавило. А жаль, хотелось рабочую игрушку здесь и сейчас, не покупая по новой новую. Вот и начал “чесать свою репу” :), а заодно и пирометр крутить/вертеть… в руках, авось придет. И ведь пришла она, идея то бишь.
У всех подобных пирометров, там где приемник, в отверстии/углублении установлена перед приемником некая матовая полупрозрачная пластина. Одни могут решить “Ну стоИт и стоИт, значит так надо!”, другие “Установлена не просто так и она что то дает!” Первые в этом случае идут учить физику с самых азов, а вторые начинают вспоминать раздел оптики, в частности линзы.
Так для чего же нужна эта пластина? Она не плоская, а немного выпуклая и выполняет роль линзы. А согласно законам физики, луч, проходя через линзу, преломляется. Вывод – пучок света, попадая на нее либо вообще расфокусируется ею, либо фокусируется не в той точке. Опять же вспоминаем принцип Глаза все из той же физики. Таким образом, пришел к выводу, что пирометр надо разобрать и попробовать исправить фокусировку. Сам приемник находится на круглой плате. Это плата прикручена к цилиндру, с одной стороны которого три отверстия: одно по центру под приемник и два по периметру, чтобы прикрутить плату с приемником к этому цилиндру; а с другой стороны вставляется в цилиндр пластиковая трубка/вставка, состоящая из двух частей (разделена по своей длине). В этой вставке внутри крепится эта самая линза, а сверху на вставке зажимается указка-луч. Так вот, внутри этой вставки по всей ее длине по диаметру есть риски/канавки, в которых, собственно говоря, и зажимается линза.
Стало быть, надо вставить линзу правильной стороной в правильную канавку, чтобы пучок в итоге фокусировался аккурат на приемнике. Для этого нам надо замерить фокусное расстояние от линзы до пучка в фокусе. Делал я это из того, что было. Линейка, фонарик и сама линза.
В итоге вертикально ставилась линейка начальной шкалой вниз, над ней вниз светил фонарик, а под фонариком перемещалась в вертикальном направлении линза вдоль шкалы линейки. Тем самым я ловил фокус, когда линза давала максимально яркую точку на столе (делал все это на его поверхности). Как только получил яркую точку, фиксировал расстояние линзы над столом по шкале линейки. Это и есть собственно говоря, фокусное расстояние.
Далее теперь надо это же расстояние отмерить внутри цилиндра. В этом случае хорошо подходит штангенциркуль, так как у большинства из них есть еще и глубиномер. У трубки/вставки в той части, что вставляется в цилиндр с приемником, есть внутреннее сужение, в которое очень удобно упирается задняя часть линейки штангенциркуля, а штырь-глубиномер опускается до упора (стенка с отверстием под приемник). Вставка при этом должна быть вставлена в цилиндр ровно так, как это всё будет находиться в корпусе пирометра. Таким образом, я узнал расстояние от приемника до уступа в пластиковой вставке. А дальше обычная математика.
Таким образом, мне удалось установить линзу на правильном фокусном расстоянии или по крайней мере близком к нему.
С указкой-лучом был небольшой «косяк» — небольшая платка с источником света была криво вклеена и в результате в держателе пластиковой вставки, что вставляется в цилиндр, она стояла с перекосом, и поэтому луч светил в сторону. Пришлось брать надфиль в руки и подтачивать платку в тех местах, где она выступала вдоль оси направления луча.
Собираем все это обратно в корпус.
А дальше калибруется указка-луч, чтобы светила в правильном направлении и аккуратно все собирается целиком.
После сборки проверил на БП от ноута, который в этот момент был включен (ноут).
Второй термометр как бы медицинский, но имеет еще и режим измерения температуры окружающей среды до 100 градусов Цельсия. С его показания и сравнивал.
Вот так мне и удалось в итоге откалибровать купленный пирометр, чтобы он показывал адекватные значения температуры, а не брал их с потолка. Ну а на сколько адекватные, все зависит от правильности схемы, сборки, точности деталей, программной прошивки и т.д. и т.п.
Товар куплен за свои кровные для своих целей.
Ссылка на видео: yadi.sk/d/eeoXwzyqwfEVw Первое снято в день получения товара (первые скрины с него же). Второе снято сегодня (11.10.2016г.)
- 08 октября 2016, 16:23
- автор: BASAdm
- просмотры: 23591
Если такой, у него только одно посадочное положение под линзу. Сначала лупите в белую глянцевую плиту с расстояния почти метр и пытаетесь увидеть температуру маленькой конфорки (про оптическое разрешение мы не слышали), + уверен что перемещая пирометр Вы словили отражения конфорки от других поверхностей поэтому были разные показания. (отражения видны на следующем фото) а потом бьёте в упор по чёрному матовому блоку питания и всё нормально (в таких условиях он бы и без переделки правильно показал) Кстати вы уверены что в ИК диапазоне линза будет собирать свет так-же как в видимом? )
Проверялось не только на газовой конфорке или именно на таком расстоянии. Снималось видео при разных условиях использования, когда я его получил. Во всех случаях он врал. Пришлось вскрывать и и проверять. А это просто скрины с видео.
А по поводу собирать — на Вашем же фото прекрасно видно, что даже в ИК диапазоне есть преломление. Иначе не было бы тех температурных отражений, что Вы отметили красными прямоугольниками. Что это по Вашему — разве не преломление? Отражение от зеркальных поверхностей — это тоже преломление и ИК такое же излучение, как и в видимом диапазоне.
Основной косяк вашего метода Видимо промотали в школе урок физики про дисперсию. Старик Ньютон не одобряет…
Вообще- то именно я эту иллюстрацию привел, как доказательство несостоятельности метода автора.
Вы это кому? Пишем не приходя в сознание?
Хватит уже -«Иди, начерти пару формул… „© Юлиан Семенов
Там несколько другой рабочий диапазон, в пульте 1 микрон, а нам интересны 10:)
И ещё, — напишу вам, просто чтобы повыше коммент был, — ‘линза’° скорее всего выполняет/выполняла другую роль, она рассеивала на шершавые же?:) поверхности конуса видимое излучение°°, чтобы не мешало.
°° и возможно «ближний ИК», тогда это поликарбонат?
А пластик вполне себе работает как линза, так как во всех ИК детекторах движения стоят много линзовые пластиковые кластеры Френеля(отпечатанные прессом на листовом пластике).А там применяются аналогичные пиродатчики с аналогичным диапазоном 5-12мкм.
Есть такое понятие частотная дисперсия — если коротко для разных длин волн разные углы преломления для одной среды.(из этого следует что сфокусированная линза для видимого света будет расфокусированная для ИК)
«Прицел» понравился очень — «не бывает явных недостатков, есть не сразу замеченные достоинства»
И ещё одна фотка нужна — наклейка, где «конус» изображён; 1:12 ‘подороже будут’, честные пишут 1:8 ÷ 1:10
ПС. Ровно 0.95, если не регулируется
Из не больших дефектов прибора был только один-кривой луч лазерного прицела.У меня аналогично, но я вношу поправку на кривизну мысленно, зная куда он отклонён.
Примерно вот так, но учтите, что это «китайский» конус:
Угу, а еще в ушах и интересных местах. 🙂
Выше Lemming написал уже.
Согласен. Это не куртку обозревать (коих тут и так навалом, имхо). Это всего лишь пару обзоров — Как попытаться, пусть и не совсем удачным способом, довести пирометр до более-менее адекватных показаний, коих у него не было вообще!? И всего то флюсы, обзоров которых тут как таковых вообще не было. Тогда увы Вы правы, скромнее надо быть.
ЗЫЖ Зато каждый мнёт себя «Белинским».
ты такой не умный, что даже слов нет! т.е. по твоему неточность прибора вышла за пределы его погрешности(2%±2º) по ттх и ты все свалил на несчастную линзу? а проверили мы на таком же эталонном дистанционном пирометре?
у меня такой же DT-500 — показывал согласно его ттх и поверхности и ее цвета. даже откалибровал его потом как то. т.к. про конус вам указали досылаю инструкцию по материалам, которая шла с прибором или есть в интернете
и еще добавлю как калибровать (эмиссию или просто температуру) — зажимаешь 2 кнопки одновременно (любую из Laser_light_key или Back_light_key) и MODE и включаешь спуском, профит!
Как сказали выше, у данного пирометра есть возможность изменять коэффициент эмиссии, собственно из-за этого и взял эту модель, правда ни разу не менял коэффициент, т.к. пару градусов разницы особой роли не играют.
Конечно какая разница, будет она фокусировать на датчике лучи или рассеивать.
От того что вы не сфокусируете изображение объекта на датчике точность измерения температуры не изменится, если поверхность равномерно нагретая.Изменится количество излучения на датчике и его чувствительность.
Попасть в нужную точку даже навороченным пирометром — сложно, интерпретировать без видео, без опыта — нереально. На снимках — замеры агрегатом FLIR i7 в режимах «матовый» и «глянец». Чайник на снимках в этот момент свистит, свисток — из чёрного матового пластика:
—
wwest будьте так добры и столь великодушны, сделайте обзор того, о чём Вы говорите/пишите (Это искренняя просьба. ). Если Вы действительно в ЭТОМ разбираетесь — научите нас (в частности меня) с практической точки зрения. Мне самому интересно. Обзор не удаляю, чтобы и дальше продолжать получать «оплеухи» за своё невежество. Вот только «оплеухи» есть, а объяснений нет. Ну как нет, ЕСТЬ, на уровне википедии и почитал в инете. А практических советов — пока что тут ПОЛНЫЙ НОЛЬ. С «задней парты» и «из толпы» и я могу выкрикивать, и приводить текстовку с того же Инета. Мы все в этом отношении «Герои» кричать «Улюлю!» и «Бей его!». Достаточно только трейд промотать вверх. Пост/топик/тема имеет часть «Что можно попытаться сделать» и это были исключительно Мои соображения. Действовать так я никого не призывал, только исключительно мои соображения и попытки. А вот «Белинские», что объявились, свои соображения подкрепляют исключительно википедией и еже с ней похоже. По крайней мере, практических советов НЕ БЫЛО.
Для тех, кто в «танке»: в оригинале и я могу накидать ссылок и предложить тыкать по ним, и самому изучать. Вас в школе именно ТАК и учили?! Интернет рулит?! Пока что тут не было предложено другого способа и более правильного, раз мой не верен по заверениям «знатоков и гуру». Тупо цитаты с Инета. Да и я не утверждаю, что я прав на все 100. Так раз уж начинаете тут разводить полемику «Правильно — не правильно!», подкрепляйте свои слова конкретными примерами из собственного опыта — Как настроить/откалибровать? Или хотя бы видеоматериалами других как это делается. А так это всё не более чем балабольство: «Ты дурак, а почему, я не скажу, сам ищи в Интернете, вот тебе ссылка!» Типа того?
ЗЫЖ Это ко всем, а не исключительно к Вам.
ЗЗЫЖ Ссылка с видео ДО и ПОСЛЕ: yadi.sk/d/eeoXwzyqwfEVw Она же будет в конце обзора для все страждущих.
При моей учёбе в универе нам не давали ссылок, нам просто говорили названия и авторов книг.Необходимо было самостоятельно найти книгу и самому прочесть, попытаться разобраться и понять о чём идёт речь.Если после самостоятельного изучения некоторые вопросы были непонятны, тогда их задавали преподавателю. Вопросы показывающие что студент не пытался разбираться в теме выходили боком задающему.
Вам придётся прочитать (я не вижу смысла пересказывать то, что написано) а если что-то непонятно, то задайте конкретный вопрос.