Асинхронный электродвигатель в качестве генератора
В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.
Асинхронные электродвигатели – самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.
Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название — короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.
Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.
По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора.
Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.
В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.
Автономные асинхронные генераторы — трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность.
Работа асинхронного электродвигателя в генераторном режиме
Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим.
Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.
Стандартная схема включения асинхронного электродвигателя в качестве генератора.
Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.
В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:
где С — ёмкость конденсаторов, мкФ.
Мощность генератора,кВ·А | Холостой ход | Полная нагрузка | |
ёмкость, мкФ | реактивная мощность, квар | cos = 1 | cos = 0,8 |
ёмкость, мкФ | реактивная мощность, квар | ёмкость, мкФ | реактивная мощность, квар |
Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости. Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы. Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.
Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте. Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.
Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.
В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:
- бытовые сварочные трансформаторы;
- электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);
- электропечи типа “Россиянка”, “Мечта” мощностью до 2 кВт;
- электроутюги (мощность 850…1000 Вт).
Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии.
Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт. Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме — “резки” металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.
В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ — косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).
В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.
Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.
Двухфазный режим асинхронного генератора.
Рис.2 Двухфазный режим асинхронного генератора.
Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит “драгоценное” топливо.
В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа “Ока”, “Волга”, поливальных насосов “Агидель”, “БЦН” и пр. У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) — больше.
Рис.3 Маломощный генератор из однофазного асинхронного двигателя.
Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.
Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других — коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы – ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.
Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: “фазу” и “ноль”.
В заключение несколько общих советов.
1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.
2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.
3. Обратите внимание на тепловой режим генератора. Он “не любит” холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.
4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы — 2/3 общей мощности генератора.
5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме “холостого хода” должно на 4…6 % превышать промышленное значение 220/380 В.
Может ли работать асинхронный двигатель как генератор — как его использовать в домашних условиях?
В электротехнике существует так называемый принцип обратимости: любое устройство, которое преобразует электрическую энергию в механическую, может делать и обратную работу. На нем основан принцип действия электрических генераторов, вращение роторов которых вызывает появление электрического тока в обмотках статора.
Теоретически можно переделать и использовать любой асинхронный двигатель в качестве генератора, но для этого надо, во-первых, понять физический принцип, а во-вторых, создать условия, обеспечивающие это превращение.
Вращающееся магнитное поле – основа схемы генератора из асинхронного двигателя
В электрической машине, изначально создающейся как генератор, существуют две активные обмотки: возбуждения, размещенная на якоре, и статорная, в которой и возникает электрический ток. Принцип её работы основан на эффекте электромагнитной индукции: вращающееся магнитное поле порождает в обмотке, которая находится под его воздействием, электрический ток.
Магнитное поле возникает в обмотке якоря от напряжения, обычно подаваемого с аккумулятора, ну а его вращение обеспечивает любое физическое устройство, хотя бы и ваша личная мускульная сила.
Конструкция электродвигателя с короткозамкнутым ротором (это 90 процентов всех исполнительных электрических машин) не предусматривает возможности подачи питающего напряжения на обмотку якоря. [attention type=yellow]Поэтому, сколько бы вы ни вращали вал двигателя, на его питающих клеммах электрического тока не возникнет. [/attention]Тем, кто хочет заняться переделкой асинхронного двигателя в генератор, надо создавать вращающееся магнитное поле самостоятельно.
Создаем предусловия для переделки
Двигатели, работающие от переменного тока, называют асинхронными. Все потому, что вращающееся магнитное поле статора чуть опережает скорость вращения ротора, оно как бы тянет его за собой.
Используя тот же принцип обратимости, приходим к выводу, что для начала генерации электрического тока вращающееся магнитное поле статора должно отставать от ротора или даже быть противоположным по направлению. Создать вращающееся магнитное поле, которое отстает от вращения ротора или противоположно ему, можно двумя способами.
Затормозить его реактивной нагрузкой. Для этого в цепь питания электродвигателя, работающего в обычном режиме (не генерации), надо включить, например, мощную конденсаторную батарею. Она способна накапливать реактивную составляющую электрического тока – магнитную энергию. Этим свойством в последнее время широко пользуются те, кто хочет сэкономить киловатт-часы.
[attention type=red]Если быть точным, то фактической экономии электроэнергии не происходит, просто потребитель немного обманывает электросчетчик на законной основе. [/attention]Накопленный конденсаторной батареей заряд находится в противофазе с тем, что создается питающим напряжением и «подтормаживает» его. В результате электродвигатель начинает генерировать ток и отдавать его обратно в сеть.
[blockquote_gray]Использование высокомощных моторов в домашних условиях при наличии исключительно однофазной сети требует определенных знаний в том, как подключить трехфазный электродвигатель в сеть 220в.
Для одновременного подключения потребителей электроэнергии к трех фазам служит специальное электромеханическое устройство — магнитный пускатель, об особенностях правильной установки которых можно прочитать здесь.[/blockquote_gray]
На практике этот эффект применяется в транспорте на электрической тяге. Как только электровоз, трамвай или троллейбус идут под уклон, к цепи питания тягового электродвигателя подключается конденсаторная батарея и происходит отдача электрической энергии в сеть (не верьте тем, кто утверждает, что электротранспорт дорог, он почти на 25 процентов обеспечивает энергией сам себя).
[attention type=green]Такой способ получения электрической энергии не есть чистая генерация. Чтобы перевести работу асинхронного двигателя в режим генератора, надо использовать метод самовозбуждения.[/attention]
Самовозбуждение асинхронного двигателя и переход его в режим генерации может возникнуть из-за наличия в якоре (роторе) остаточного магнитного поля. Оно очень мало, но способно породить ЭДС, заряжающее конденсатор. После возникновения эффекта самовозбуждения конденсаторная батарея подпитывается от произведенного электрического тока и процесс генерации становится непрерывным.
Секреты изготовления генератора из асинхронного двигателя
Чтобы превратить электромотор в генератор надо использовать неполярные конденсаторные батареи. Электролитические конденсаторы для этого не годятся. В трехфазных двигателях конденсаторы включаются звездой или треугольником. Соединение «звездой» позволяет начать генерацию на меньших оборотах ротора, но величина напряжения на выходе будет несколько ниже, чем при соединении «треугольником».
Также можно сделать генератор из однофазного асинхронного двигателя. Но для этого годятся лишь те, которые имеют короткозамкнутый ротор, а для запуска используют фазосдвигающий конденсатор. Коллекторные однофазные двигатели для переделки в генератор не годятся.
Рассчитать в бытовых условиях величину потребной емкости конденсаторной батареи не представляется возможным. [attention type=yellow]Поэтому домашний мастер должен исходить из простого соображения: общий вес конденсаторной батареи должен быть равен или немного превышать вес самого электродвигателя. [/attention]На практике это приводит к тому, что создать достаточно мощный асинхронный генератор почти невозможно, поскольку чем меньше номинальные обороты двигателя, тем он больше весит.
Оцениваем уровень эффективности — выгодно ли это?
Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.
Во многих теоретических изданиях главным преимуществом асинхронных генераторов представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора. Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.
Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать. [attention type=green]Такие источники электрической энергии применяются в домашних автономных электростанциях, приводимых в действие силой ветра или падающей воды.[/attention]
Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».
У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.
Все остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.
Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.
Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки. [attention type=red]Однако при этом полностью теряется преимущество «простоты схемы».[/attention]
Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.
Можно ли использовать электродвигатель как генератор
Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.
Законы, позволяющие использовать асинхронный электродвигатель как генератор
В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.
В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.
Способы переделки электродвигателя в генератор
Есть два способа «регулировки» магнитного поля статора.
Торможение реактивной нагрузкой
Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.
Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.
Самовозбуждение электродвигателя
Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.
Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.
Что нужно знать, чтобы электродвигатель работал как генератор
При переделке двигателя в генератор следует учитывать следующие технические детали:
- Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
- В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
- Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.
Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.
Насколько эффективно использование электродвигателя в качестве генератора
У использования электродвигателя как генератора есть свои «плюсы»:
- Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
- Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.
- Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
- Частота вырабатываемого тока часто нестабильна.
- Такой генератор не может обеспечить промышленную частоту тока.
Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.
Асинхронный генератор из асинхронного электродвигателя.
Этот пост буде полезен тому, кто имеет выгодный для него любой (пропановый, метановый, дизельный, бензиновый) ДВС и хочет смастерить аварийную электростанцию, не имея специальной синхронной электромашины — генератора. Того самого, который имеет якорь с явно-выраженными полюсами, обмотки возбуждения на этом якоре и контактные кольца этих обмоток или вращающийся трансформатор для возбуждения этих обмоток якоря. Проще говоря, у Вас ДВС есть, а вот специальной (как Вам кажется) электромашины — генератора нет. Есть очень простой вариант. Любой мощности…главное, чтобы Ваш ДВС это потянул))). Все настолько просто, что достаточно только текста, чтобы это объяснить, как это сделать из любого АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ, коих полчища продается новых или украдены с предприятий.
Когда — то, в 1998 году мой край погрузился в энергетический кризис. Электричества не было по 8 часов в сутки. Люминисцентные аккумуляторные фонари и электростанции заполнили округу. Ну конеччччно очень много из этого попадало в ремонт. Электростанции, по вине их хозяев часто попадали под внезапно появившееся встречное напряжение из города и требовали перемотки статоров их генераторов и ремонта электроники. Было отремонтировано уже много таких генераторов, попадались только СИНХРОННЫЕ..
… который имеет якорь с явно-выраженными полюсами, обмотки возбуждения на этом якоре и контактные кольца этих обмоток или вращающийся трансформатор для возбуждения этих обмоток якоря.
И вдруг… привезли какую-то немецкую ДВС — генератор машину мощностью 4,5 КВт. Из вентиляционных щелей генератора несло дегтем, при вскрытии генератора вдруг обнаружился обычный ротор асинхронного двигателя, горелый статор и загадочный ящик с емкостями, соединенными треугольником.
-Что это такое и как это работает ? Было тогда давно недоумение и тупление над горелым трупом статора.
1. Силовая схема : Статор трехфазный, 4 вывода от 3 фаз звезды и нейтрали звезды. 2. 3 емкости соединенные треугольником, подключены к трем выводам звезды статора. 3. К этому-же статору подключены розетки для нагрузки, больше не было ВООБЩЕ НИЧЕГО, НИКАКОЙ ЭЛЕКТРОНИКИ.
Заморочился тогда, был малолетка, подумал что секрет заключен в хитрых обмотках статора. Выпалил под подъездом на костре статор, аккуратно размотал его на кухне пятиэтажки ))), зарисовывая схемы пазов и соединения катушек в фазные зоны. Когда зарисовал весь статор, выпал в осадок…получилась схема обмоток статора… обычного асинхронного электродвигателя на 2980 об/мин. В мозгу тогда возникли воспоминания, как наша 13 летняя дворовая компания пробралась во двор котельной, толпа крутит ногами якорь крупного брошенного во дворе асинхронника, при замыкании выводов статора — вспышки и искры. В электротехническом справочнике 1958 года прочитался тогда только короткий абзац по асинхронным генераторам. Все примитивно и смешно. Не буду томить Вас… 1) Ротор обычного асинхронника имеет остаточный магнетизм, который, при вращении этого ротора другим двигателем значительно улавливается обмотками статора. 2) Соедините три емкости треугольником. Каждая из емкостей должна быть в соотношении 80 Мкф на 5 Квт мощности асинхронника. Это будет система возбуждения реактивной энергией 3) Возьмите асинхронный электромотор, с шестью выводами обмоток статора, соедините его обмотки в звезду, отведите центр звезды для 220 Вольт розеток. 4)Соедините вершины треугольника емкостей с отводами звезды статора асинхронника. 5)Раскрутите этот асинхронник Вашим ДВС, со скоростью выше на 20 — 30 %, чем номинальная частота этого же асинхронника в режиме электродвигателя. ДВС должен быть с автоматическим регулятором оборотов, настроенным впоследствии на эту частоту. 6)Получите генератор.